Tilable nature of virus capsids and the role of topological constraints in natural capsid design.

نویسندگان

  • Ranjan V Mannige
  • Charles L Brooks
چکیده

Virus capsids are highly specific assemblies that are formed from a large number of often chemically identical capsid subunits. In the present paper we ask to what extent these structures can be viewed as mathematically tilable objects using a single two-dimensional tile. We find that spherical viruses from a large number of families-eight out of the twelve studied-qualitatively possess properties that allow their representation as two-dimensional monohedral tilings of a bound surface, where each tile represents a subunit. This we did by characterizing the extent to which individual spherical capsids display subunit-subunit (1) holes, (2) overlaps, and (3) gross structural variability. All capsids with T numbers greater than 1 from the Protein Data Bank, with homogeneous protein composition, were used in the study. These monohedral tilings, called canonical capsids due to their platonic (mathematical) form, offer a mathematical segue into the structural and dynamical understanding of not one, but a large number of virus capsids. From our data, it appears as though one may only break the long-standing rules of quasiequivalence by the introduction of subunit-subunit structural variability, holes, and gross overlaps into the shell. To explore the utility of canonical capsids in understanding structural aspects of such assemblies, we used graph theory and discrete geometry to enumerate the types of shapes that the tiles (and hence the subunits) must possess. We show that topology restricts the shape of the face to a limited number of five-sided prototiles, one of which is the "bisected trapezoid" that is a platonic representation of the most ubiquitous capsid subunit shape seen in nature (the trapezoidal jelly-roll motif). This motif is found in a majority of seemingly unrelated virus families that share little to no host, size, or amino acid sequence similarity. This suggests that topological constraints may exhibit dominant roles in the natural design of biological assemblies, while having little effect on amino acid sequence similarity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Table of Virus Capsids: Implications for Natural Selection and Design

BACKGROUND For survival, most natural viruses depend upon the existence of spherical capsids: protective shells of various sizes composed of protein subunits. So far, general evolutionary pressures shaping capsid design have remained elusive, even though an understanding of such properties may help in rationally impeding the virus life cycle and designing efficient nano-assemblies. PRINCIPAL ...

متن کامل

Geometric considerations in virus capsid size specificity, auxiliary requirements, and buckling.

Spherical capsids are shells of protein subunits that protect the genomes of many viral strains. Although nature displays a range of spherical capsid sizes (reflected by the number of subunits in the formation), specific strains display stringent requirements for forming capsids of specific sizes, a requirement that appears crucial to infectivity. Despite its importance in pathogenicity, little...

متن کامل

A minimal representation of the self-assembly of virus capsids.

Viruses are biological nanosystems with a capsid of protein-made capsomer units that encloses and protects the genetic material responsible for their replication. Here we show how the geometrical constraints of the capsomer-capsomer interaction in icosahedral capsids and the requirement of low frustration fix the form of the shortest and universal truncated multipolar expansion of the two-body ...

متن کامل

Stimulation of dendritic cell functional maturation by capsid protein from chikungunya virus

Objective(s): Chikungunya virus (ChikV) infection is characterized by persistent infection in joints and lymphoid organs. The ChikV Capsid protein plays an important role in regulating virus replication. In this study, we hypothesized that capsid protein may stimulate dendritic cell (DC) activation and maturation and trigger an inflammatory response in mice. ...

متن کامل

A conformational change in the adeno-associated virus type 2 capsid leads to the exposure of hidden VP1 N termini.

The complex infection process of parvoviruses is not well understood so far. An important role has been attributed to a phospholipase A2 domain which is located within the unique N terminus of the capsid protein VP1. Based on the structural difference between adeno-associated virus type 2 wild-type capsids and capsids lacking VP1 or VP2, we show via electron cryomicroscopy that the N termini of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 77 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2008